Test 2
Sat 28 June 2025
pip install pandas
Collecting pandas
Downloading pandas-2.3.0-cp312-cp312-win_amd64.whl.metadata (19 kB)
Requirement already satisfied: numpy>=1.26.0 in c:\users\sanjay\miniconda3\envs\py312\lib\site-packages (from pandas) (2.3.1)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\sanjay\miniconda3\envs\py312\lib\site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in c:\users\sanjay\miniconda3\envs\py312\lib\site-packages (from pandas) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in c:\users\sanjay\miniconda3\envs\py312\lib\site-packages (from pandas) (2025.2)
Requirement already satisfied: six>=1.5 in c:\users\sanjay\miniconda3\envs\py312\lib\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)
Downloading pandas-2.3.0-cp312-cp312-win_amd64.whl (11.0 MB)
---------------------------------------- 0.0/11.0 MB ? eta -:--:--
------ --------------------------------- 1.8/11.0 MB 12.6 MB/s eta 0:00:01
---------------- ----------------------- 4.5/11.0 MB 11.2 MB/s eta 0:00:01
------------------------ --------------- 6.8/11.0 MB 11.3 MB/s eta 0:00:01
--------------------------------- ------ 9.2/11.0 MB 11.4 MB/s eta 0:00:01
---------------------------------------- 11.0/11.0 MB 11.2 MB/s eta 0:00:00
Installing collected packages: pandas
Successfully installed pandas-2.3.0
Note: you may need to restart the kernel to use updated packages.
print("testing pynotes 2")
testing pynotes 2
import pandas as pd
data={
'Name':['sanjay','asha','ravi'],
'score':[85,90,78]
}
df=pd.DataFrame(data)
print(df)
df_csv=pd.read_csv("students.csv")
print(df_csv)
print()
print(df_csv.head())
print()
print(df_csv.tail())
print()
print(df_csv["Score"])
print()
print(df_csv[["Name","Score"]] )
print()
print(df_csv[df_csv["Score"]>85])
print()
print(df_csv)
print()
df_csv["Passed"]=df_csv["Score"]>=80
print(df_csv)
print()
print(df_csv.groupby("Subject")["Score"].mean())
Name score
0 sanjay 85
1 asha 90
2 ravi 78
Name Age Subject Score
0 Sanjay 18 Math 85
1 Asha 17 Science 90
2 Ravi 18 English 78
3 Meena 17 Math 92
4 Kiran 19 Science 88
Name Age Subject Score
0 Sanjay 18 Math 85
1 Asha 17 Science 90
2 Ravi 18 English 78
3 Meena 17 Math 92
4 Kiran 19 Science 88
Name Age Subject Score
0 Sanjay 18 Math 85
1 Asha 17 Science 90
2 Ravi 18 English 78
3 Meena 17 Math 92
4 Kiran 19 Science 88
0 85
1 90
2 78
3 92
4 88
Name: Score, dtype: int64
Name Score
0 Sanjay 85
1 Asha 90
2 Ravi 78
3 Meena 92
4 Kiran 88
Name Age Subject Score
1 Asha 17 Science 90
3 Meena 17 Math 92
4 Kiran 19 Science 88
Name Age Subject Score
0 Sanjay 18 Math 85
1 Asha 17 Science 90
2 Ravi 18 English 78
3 Meena 17 Math 92
4 Kiran 19 Science 88
Name Age Subject Score Passed
0 Sanjay 18 Math 85 True
1 Asha 17 Science 90 True
2 Ravi 18 English 78 False
3 Meena 17 Math 92 True
4 Kiran 19 Science 88 True
Subject
English 78.0
Math 88.5
Science 89.0
Name: Score, dtype: float64
Score: 0
Category: pandas-work